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ABSTRACT
Pre-trained language models such as BERT have been a key in-
gredient to achieve state-of-the-art results on a variety of tasks in
natural language processing and, more recently, also in information
retrieval. Recent research even claims that BERT is able to capture
factual knowledge about entity relations and properties, the infor-
mation that is commonly obtained from knowledge graphs. This
paper investigates the following question: Do BERT-based entity
retrieval models benefit from additional entity information stored
in knowledge graphs? To address this research question, we map
entity embeddings into the same input space as a pre-trained BERT
model and inject these entity embeddings into the BERT model.
This entity-enriched language model is then employed on the en-
tity retrieval task. We show that the entity-enriched BERT model
improves effectiveness on entity-oriented queries over a regular
BERTmodel, establishing a new state-of-the-art result for the entity
retrieval task, with substantial improvements for complex natural
language queries and queries requesting a list of entities with a
certain property. Additionally, we show that the entity information
provided by our entity-enriched model particularly helps queries
related to less popular entities. Last, we observe empirically that
the entity-enriched BERT models enable fine-tuning on limited
training data, which otherwise would not be feasible due to the
known instabilities of BERT in few-sample fine-tuning, thereby
contributing to data-efficient training of BERT for entity search.
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1 INTRODUCTION
Pre-trained language models (LMs) such as BERT [11] and its suc-
cessors [27, 38, 52] learn rich contextual information about words
from large-scale unstructured corpora and have achieved intrigu-
ing results on a variety of downstream tasks in natural language
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processing (NLP) [11, 25, 26] and information retrieval (IR) [32, 46].
It is even shown that these language models have the capability of
capturing a tremendous amount of world knowledge, including in-
formation about real-world entities otherwise found in knowledge
graphs (KGs) [35, 42]. For example, language models can predict
masked objects in cloze sentences such as “The native language of
Mammootty is _____” and “The Sharon Cuneta Showwas created in
_____”, where each of them demonstrates a ⟨subject, relation,
object⟩ triple in a knowledge graph.

Language models, however, fail to perform complex reasoning
about entities, as they cannot capture sparse world facts [23, 35, 39].
In information retrieval systems, users ask complex queries about
entities, such as “What is the second highestmountain in theworld?”
or “Most famous civic-military airports.” Answering such queries
requires leveraging rich human curated information about enti-
ties in the knowledge graphs. To bridge the gap between LMs
and KGs, recent works enhance language models with rich struc-
tured entity information from knowledge graphs, showing supe-
rior performance for knowledge-driven NLP tasks such as rela-
tion classification, entity typing, and cloze-style question answer-
ing [23, 34, 37, 43, 45, 50, 54]. Despite this success, no previous
study has examined the effect of entity-enriched language models
for answering entity-oriented queries in IR.

This work explores the benefit of enriching BERT-based retrieval
models with auxiliary entity information from KGs for the entity
retrieval task, where users’ queries are better answered with entities
rather than passages or documents [2]. It is shown that entity
information improves performance of document and entity retrieval
tasks [9, 15, 18, 47, 48]. Yet, these studies were performed using
traditional retrieval models, without utilizing LMs such as BERT.

The development of BERT-based models for entity retrieval faces
a major challenge: there is limited training data for the entity re-
trieval task, and fine-tuning of BERT in data-constraint regimes
leads to instabilities in model performance [13, 36, 53]. More specif-
ically, the official entity retrieval dataset, DBpedia-Entity v2 [21],
contains 467 queries; considered a small dataset for fine-tuning of
a large neural language model. When fine-tuning BERT (especially
its large variant) on a target task, the training data should be large
enough that the model parameters get close to the ideal setting of
the target task, or otherwise it causes forgetting of what the model
has already learned.

Against this background, our first and primary research question
is RQ1: Can an entity-enriched BERT-based retrieval model improve
the performance of entity retrieval? To address this question, we
propose an entity-enriched BERT-based retrieval model, EM-BERT,
where factual entity information is injected into the monoBERT
model [32] in the form of Wikipedia2Vec [49] entity embeddings
that are transformed into the BERT’s word piece vector space [37];
see Figure 1. The EM-BERT model is first trained with the MS
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MARCO passage dataset and further fine-tuned on the DBpedia-
Entity v2 collection (in a cross validation setup). Our experiments
indicate that our EM-BERT model improves state-of-the-art entity
retrieval results by 11% with respect to NDCG@10. We also make
the intriguing finding that while fine-tuning of the plain BERT-
based retrieval model (monoBERT) on DBpedia-Entity v2 is brittle
and prone to degenerate performance, the same fine-tuning process
using the entity-enriched BERTmodel (EM-BERT) results in a stable
model and brings consistent and meaningful improvements. We
posit that this is attributed to direct injection of entity information
into the BERT model, which brings the input distribution of the
model close to the output label space, thereby contributing to data-
efficient training of BERT-based models for entity-oriented tasks.

After observing the effectiveness of our EM-BERT model, we
focus on understanding the whens and whys of entity-enriched
BERT models for information retrieval tasks. Our next research
question is:RQ2:When andwhich queries are helped by the EM-BERT
model? We observe that EM-BERT mainly helps queries that are
annotated with at least one entity; plain and entity-enriched BERT
models perform on par with each other for queries without linked
entities. We further examine queries with linked entities and find
that EM-BERT is most helpful when entity mentions are broken
into multiple word pieces by the BERT tokenizer (e.g. mention
“Tuvalu” in Figure 1). This indicates that directly injecting entity
information into the BERT-based models is particularly important
for less popular entities, which BERT does not recognize as a single
word (or phrase) because they are less observed during pre-training.

In our third question, we investigate RQ3: Why does the EM-
BERT model work and what does it learn during the fine-tuning stage?
We approach this by comparing the embeddings produced at the
final layer of the EM-BERT network for both entities and their
mention tokens. We find that the learned entity representations,
unlike their corresponding word piece representations, form clear
clusters in the embedding space, capturing the relation between
entities. We also study some examples, and show that attention
weights of entity tokens are larger than other tokens for queries
requesting lists of entities or queries related to less known entities.

Finally, we question RQ4: How does our entity-enriched BERT-
based model perform on other ranking tasks? To address this research
question, we apply the EM-BERTmodel to the passage ranking task,
where entity information is known to be less important and a large
amount of training data can be used. We observe that the entity in-
formation that is embedded in the plain BERT-based retrieval model
is enough for addressing this task and auxiliary entity information
from knowledge graphs does not bring significant improvements.

In summary, this work makes the following contributions:

• We study the effect of enriching BERT with entity informa-
tion for information retrieval tasks and propose an entity-
enhanced BERT-based re-ranker EM-BERT.

• We establish new state-of-the-art results for the entity re-
trieval task on DBpedia-Entity v2 collection.

• We show that our entity-enriched model, unlike its equiva-
lent model based on plain BERT, is robust against instabilities
of BERT in data-constraint regimes and introduce EM-BERT
as a data-efficient BERT-based model for entity retrieval.

• We perform thorough analysis of our EM-BERT model and
add to our understanding of the model. We unfold when and
for which queries this model work, what it learns, and how
it works.

The resources developed within the course of this paper are avail-
able at https://github.com/informagi/EMBERT.

2 RELATEDWORK
Graph Embeddings. After the introduction of word embed-

dings methods like Word2Vec [29], neural embedding methods
became increasingly popular. Word2Vec uses a single-layer neural
network to either predict a word depending on its context (Continu-
ous Bag of Word) or the context depending on a word (Skip-Gram).
The resulting hidden layer of this network captures a representation
of words and can be used for other downstream tasks. After the suc-
cess of these, embedding methods were expanded to capture other
types of knowledge as well, for example knowledge graphs. These
so-called graph embeddings aim to embed the nodes of a knowledge
graph in a way that entities and their relations are mapped accord-
ingly into the vector space. One of the earliest introduced methods
was TransE [4], which optimizes embeddings for head-relation-tail
triples.
The graph embedding method utilized in this paper is Wikipe-
dia2Vec [49]. This method is similar to Word2Vec, but is extended
to be used on text-heavy knowledge bases like Wikipedia. Instead
of solely relying on words or edges between entities, it uses a combi-
nation of words, entities, and anchor texts. Using either Skip-Gram
or Continuous Bag of Words method like in Word2Vec, it employs
a single layer neural network to predict neighboring words to cap-
ture word similarities, entities relations (based on neighboring enti-
ties), and word-entity relations (based on surrounding anchor-text).
Through this combination, words and entities get embedded into
the same vector space.

Entity Retrieval. Graph embeddings have been used to assist
in entity-oriented information retrieval. Gerritse et al. [16] usesWiki-
pedia2Vec embeddings for entity retrieval on the DBpedia-Entity v2
collection [21]. This is done by first tagging entities in the queries
by using the TAGME entity linker [14]. Retrieved entities are then
re-ranked by computing the cosine similarity score between the re-
trieved entities and the tagged entities, improving upon the state of
the art for entity retrieval. KEWER [31] is another method for entity
retrieval based on graph embeddings. It learns joint embeddings
for both words and entities, combining this with entities annotated
queries using SMAPH [7]. KEWER also improved previous state
of the art for entity retrieval. The most recent graph-based en-
tity ranking method, ENT Rank [12], utilizes entity-neighbor-text
relations in a learning-to-rank model. ENT Rank incorporates a
variety of entity features based on text, co-occurring entities, and
entity neighbor relations, and performs competitively on entity
ranking tasks. The paper, however, uses a different version of the
DBpedia-Entity v2 collection and calculates the evaluation metrics
only over judged entities, making it incomparable to our and the
aforementioned entity retrieval methods.

The BEIR [40] benchmark provides a number of zero-shot re-
trieval models for several IR databases, including the DBpedia-
Entity v2 entity retrieval collection. The best performing entity
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Figure 1: Illustration of the EM-BERT model. Entity annotated query and documents are tokenized and mapped to their
corresponding vector representations using 𝐹𝐵𝐸𝑅𝑇 and 𝐹𝐸−𝐵𝐸𝑅𝑇 functions.

retrieval model in BIER, BM25 + CE, re-ranks the top 100 entities
retrieved by BM25, and then uses the MiniLM cross-encoder model
[44], trained with the knowledge distillation setup provided by
Hofstätter et al. [22].

Entity Linking. Utilizing entity information for retrieval mod-
els requires identifying entity information from documents and
queries [3, 17, 19]. This is performed by annotating text with entity
linking toolkits [6, 7, 14, 20, 41]. In this paper, we use the REL entity
linker [41], which is the state-of-the-art open source entity link-
ing toolkit. REL detects mentions using Flair [1] embeddings. REL
performs candidate selection based on Wikipedia2Vec embeddings,
and entity disambiguation based on latent relations between entity
mentions in the text.

Transformer-based Rankers. Bidirectional Encoder Represen-
tations from Transformers (BERT) [11] is a language representa-
tion model, pre-trained to capture bi-directional relations between
words. The pre-trained BERT model can be fine-tuned for various
NLP tasks. BERT can be used for binary relevance classification by
feeding it a sentence A and sentence B, and using the BERT clas-
sifier token (further denoted as [CLS]) to predict relevance. This
setup has been shown to be effective for question answering.

BERT-based models are effective for information retrieval as well,
and due to their relatively low number of input tokens became es-
pecially popular for passage retrieval. Several BERT-based methods
have made enormous improvements on the previous state of the
art [32, 46]. MonoBERT [32] is a point-wise re-ranker, in which the
BERT model is used as a binary relevance classifier. MonoBERT,
at the time of release, obtained state-of-the-art results on the MS
MARCO and TREC CAR datasets. After pre-training, the ranking
is done by first making an initial ranking with a baseline method
like BM25, and then re-ranking a query and passage by feeding a
pair of sentences A (query) and B (passage) to BERT.

Entities and Transformers. During pre-training, BERT does
not explicitly get structured data about entities. Some researchers
have claimed that adding this may not be necessary since BERT
captures this information implicitly [35, 42]. Others set out to enrich
BERT with entity information. One of the first works combining
entities with transformers, ERNIE [54], is an enhanced language
representation model, where the combination of entities and text
is used to fine-tune the model. In KnowBert [34], contextual word
embeddings are also enhanced by integrating information about
entities. This is done by introducing a Knowledge Attention and
Recontextualization component, which takes information in one
layer of a BERT network, computes the enhanced entity information
of that layer, and feeds it to the next layer. This method improves
on BERT for entity-related tasks like entity linking.

E-BERT [37] is another method to enhance BERT with entity
information. The main point which distinguishes E-BERT from the
previously mentioned work is that it does not require any additional
training of the network; it only requires the computation of one
large transformation matrix. This allows the method to be applied
to any fine-tuned transformer model. Since Wikipedia2Vec embeds
both words and entities in the same vector space, the embeddings
of words in Wikipedia2Vec can be used to align a mapping. E-BERT
has been shown to improve performance on unsupervised QA tasks
like LAMA, as well as downstream tasks like relation classification.

Other works combining language models and knowledge graphs
include [5], which enhances BERT with entities by using BERT
itself for entity linking and seeing how much information of knowl-
edge graphs is already contained in BERT. Next, BERT classifies
texts to predict whether certain tokens belong to an entity. The au-
thors show that specifically fine-tuning BERT on entity information
greatly improves their scores on entity linking, thus showing that
pre-trained BERT does not embed all information about entities yet,
claiming that additional entity information does not help if either
entities are too scarce in the data or if the task does not require
entity knowledge.



3 METHOD
In this section, we first provide a brief overview of knowledge graph
embeddings and Wikipedia2Vec (Section 3.1), and then describe the
EM-BERT model, which is an entity-enhanced version of a BERT-
based retrieval model (Section 3.2), followed by a description of
EM-BERT query-document input representation.

3.1 Background
Knowledge graph embeddings provide vector representations of
entities in a knowledge graph, projecting entity properties and
relations into a continuous vector space. These embeddings have
proven effective not only for entity-related tasks such as entity
linking [51], but also for general tasks such as question answer-
ing [31]. Knowledge graph embeddings can be constructed purely
based on graph topology (i.e., entities and their relations) [4], or
combining graph topology with additional textual information such
as the entity descriptions [51]. In this paper, we use Wikipedia2Vec
embeddings [49], which extends the skip-gram model [29] with
entity relations and descriptions from Wikipedia and maps words
and entities into a shared vector space. Following [37], we trans-
form Wikipedia2Vec entity embeddings into the BERT word piece
embedding space and use them as input to the BERT model, similar
to a BERT word piece vector.

Formally, Wikipedia2Vec embeds a list of words L𝑤𝑜𝑟𝑑 and a
list of entities L𝑒𝑛𝑡 into a vector space R𝑑Wikipedia , where 𝑑Wikipedia
is dimensions of the Wikipedia embeddings. The embeddings are
trained by fitting a one layer neural network with the loss:

L = L𝑤 + L𝑒 + L𝑎,

which consist of three cross-entropy loss functions:
L𝑤 : predicting context words of a given word.
L𝑒 : predicting neighboring entities of a given entity.
L𝑎 : predicting anchor text of an entity to combine words and

entities in a single embedding space.
The weight layer of this neural network results in the function

𝐹Wikipedia : L𝑤𝑜𝑟𝑑 ∪ L𝑒𝑛𝑡 → R𝑑Wikipedia , which embeds both words
and entities in the Wikipedia vector space. BERT, on the other hand,
tokenizes text into the word piece dictionary L𝑤𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 . We use
the lookup function 𝐹𝐵𝐸𝑅𝑇 : L𝑤𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 → R𝑑𝐵𝐸𝑅𝑇 to transform
word pieces into the 𝑑𝐵𝐸𝑅𝑇 -dimensional native BERT word piece
vector space, the resulting vector being the input for the BERT
model.

3.2 EM-BERT
Our proposed model, referred to as EM-BERT, incorporates entity
embeddings into a point-wise document ranking approach. In its
essence, EM-BERT combines E-BERT [37] with monoBERT [32]
and predicts a retrieval score for a query-document pair, each rep-
resented by a sequence of words and entities. The model takes
as input the concatenation of the query tokens 𝑡𝑞1 , ..., 𝑡𝑞𝑛 and the
document tokens 𝑡𝑑1 , ..., 𝑡𝑑𝑚 , where each token 𝑡𝑖 is either a BERT
native word piece token or an entity token.

Entity-enriched BERT. The off-the-shelf BERT model only
accepts its native word pieces. To incorporate entity embeddings
into BERT, we need to align entity vectors with word piece vectors.

Following [37], this is done by a linear transformation of entity
vectors to BERT-like vectors. Since L𝑤𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 does not contain
any entities, the Wikipedia2Vec word dictionary L𝑊𝑜𝑟𝑑 is used
to obtain the linear transformationW ∈ R𝑑𝐵𝐸𝑅𝑇 ×𝑑Wikipedia , learned
from the Wikipedia2Vec word vector space 𝐹Wikipedia [L𝑊𝑜𝑟𝑑 ] and
BERT word piece space 𝐹𝐵𝐸𝑅𝑇 [L𝑤𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 ]:

W = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊

∑︁
𝑥∈L𝑤𝑜𝑟𝑑∩L𝑤𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒

| |𝑊 · 𝐹Wikipedia (𝑥) − 𝐹𝐵𝐸𝑅𝑇 (𝑥) | |22 . (1)

Here, the intersection between L𝑤𝑜𝑟𝑑 and L𝑤𝑜𝑟𝑑𝑝𝑖𝑒𝑐𝑒 is taken to
ensure that the selected words have embeddings in both Wikipedia
and BERT vector spaces. The equation computesmatrixW, in which
the distance between W · 𝐹Wikipedia (𝑥) and 𝐹𝐵𝐸𝑅𝑇 (𝑥) is minimal
for all 𝑥 . Using W, we can then construct the function 𝐹𝐸−𝐵𝐸𝑅𝑇 ,
which maps both entities and word tokens to the BERT input vector
space:

𝐹𝐸−𝐵𝐸𝑅𝑇 (𝑎) =
{
W · 𝐹Wikipedia (𝑎), 𝑎 ∈ L𝑒𝑛𝑡
𝐹wordpiece (𝑎), otherwise.

(2)

The aligned entity vectors are then fed into BERT when an entity is
mentioned in the input text. The entities are obtained by annotating
the text with an entity; e.g., given the text “Who produced films
starring Natalie Portman", the annotated sentence becomes “Who
produced films starring Natalie Portman ENTITY/NataliePortman".
This text is then tokenized as “who produced films starring
natalie port ##man /ENTITY/Natalie_Portman," where the
entity ID (in bold face) is a single token, embedded by 𝐹𝐸−𝐵𝐸𝑅𝑇
(Eq. 2). We note that the transformation matrixW can be fit into
any pre-trained or fine-tuned BERT model, thus making E-BERT
embeddings usable for every available BERT model.

Retrieval. The retrieval phase is based on monoBERT [33],
which is a multi-stage ranking method with BERT and has been
shown to achieve competitive results on MS MARCO passage re-
trieval [30] and TREC-CAsT [8]. The simplicity of this model, cou-
pled with its high effectiveness enables us to discern the effect of
entity information on BERT-based retrieval models and obtain an
understanding of the whys and whens of entity-enriched BERT
models for information retrieval tasks.

In the multi-stage ranking method, for a query 𝑞, documents
are ranked with an initial ranking method; e.g., BM25. The top-𝑘
documents, denoted as 𝐷𝐾 = {𝑑1, 𝑑2, . . . , 𝑑𝑘 }, are then passed to a
second ranker for re-ranking; here a BERT-based retrieval model.
Every query-document pair ⟨𝑞, 𝑑𝑖 ∈ 𝐷𝐾 ⟩ is passed to BERT as two
sentences 𝐴 and 𝐵, with the separation token [SEP] in between.
The BERT [CLS] classification vector is used as input to a single
layer neural network to obtain the probability 𝑠𝑖 of the document 𝑑𝑖
being relevant to the query 𝑞. To train this model, the cross-entropy
loss is used:

𝐿 = −
∑︁
𝑗∈ 𝐽𝑝𝑜𝑠

𝑙𝑜𝑔(𝑠 𝑗 ) −
∑︁
𝑗∈ 𝐽𝑛𝑒𝑔

𝑙𝑜𝑔(1 − 𝑠 𝑗 ), (3)

where 𝐽𝑝𝑜𝑠 and 𝐽𝑛𝑒𝑔 are indexes of relevant and non-relevant docu-
ments for all queries.

Putting all the pieces together, the training process of the EM-
BERT model is summarized as follows. First, the transformation
matrixW is trained using Wikipedia2Vec embeddings and BERT



Table 1: Statistics about document length and number of linked entities in queries and documents of the used datasets, with
mean and standard deviation. Document and query length information is computed without adding entity information.

Dataset size avg length avg entities total linked
MS MARCO dev queries 6980 6.95 ± 2.54 0.34 ± 0.57 2392
MS MARCO passages 8841823 58.27 ± 22.94 2.55 ± 3.22 22532200
DBpedia-Entity v2 queries 467 6.55 ± 2.88 0.82 ± 0.64 381
DBpedia-Entity v2 short abstracts 389622 55.93 ± 25.95 6.88 ± 3.93 2678843

word pieces. All queries and documents are annotated with an
entity linker, and the tagged queries and documents are tokenized
and mapped to the corresponding vector representations using
function 𝐹𝐸−𝐵𝐸𝑅𝑇 . This input is fed into the EM-BERT model and
the model is first fine-tuned on MS MARCO passages and then on
the entity retrieval collection.

Query-DocumentRepresentation. In the EM-BERTmodel (sim-
ilar to monoBERT), queries are truncated to have a maximum token
length of 64, and the combination of the query, passage, and separa-
tion tokens are truncated to have a maximum length of 512 tokens.
Following [37], we concatenate mentions and entities, separated
by the token ‘/’; i.e., “mention + ‘/’ + EntityID.” The final rep-
resentation of query-document pairs is “[CLS] + Query + [SEP] +
Document + [SEP];” see Figure 1.

4 EXPERIMENTAL SETUP
To address our research question, we compare the EM-BERT model
with several baselines on the entity retrieval task and analyze the
results. Due to limited training data for entity retrieval, we perform
two-stage fine-tuning: we first fine-tune our models on the anno-
tated MS MARCO passage dataset, and then continue fine-tuning
on DBpedia-Entity v2 collection. In the following, we describe our
experimental setup.

4.1 Entity Linking and Embeddings
We use the REL entity linking toolkit [41] to annotate texts with
entities. REL is known to have high precision compared to other en-
tity linking toolkits such as GENRE [6] and TAGME [14], ensuring
that limited noise (incorrectly annotated entities) is added to the
model. REL incorporates Wikipedia2Vec embeddings trained on
the Wikipedia link graph. To avoid a mismatch between annotated
entities and Wikipedia2Vec entity embeddings [12, 16], we follow
the REL Wikipedia2Vec training procedure, using the Wikipedia
dump of 2019-07-01, setting min-entity-count parameter to zero,
with a dimensionality of 500.

4.2 First Stage Fine-tuning
Collection. For the first stage fine-tuning of EM-BERT, we use

the MS MARCO passage ranking collection, consisting of 8,841,823
passages, extracted from web documents retrieved by Bing. MS
MARCO provides a training set with approximately 800k queries, a
development set with 6980 queries with public relevance judgments,
and an evaluation set with 6837 queries and private relevance judg-
ments.

Although MS MARCO passage ranking is not an entity-related
task, REL annotates 29% of queries in the development sets with at

least one entity; e.g., “what were the brothers grimm names.” The
statistics of this collection (with REL annotations) are reported in
Table 1. It shows that on average every query and document is
annotated with 0.34 and 2.55 entities respectively, indicating that a
fair amount of entities is present in this dataset.

Training. We fine-tune our EM-BERT model on the officially
provided MS MARCO training set. This set provides triples of a
query, a positive example, and a negative example, making the
ratio of positive-negative documents equal during training. We
refer to these triples as “sample.” Starting from the monoBERT
model provided by HuggingFace,1 we fine-tune EM-BERT with
randomly selected 300k samples (cf. §3.2); fine-tuning with more
samples, up until 900k, did not give any further improvements on
the development set. We use an accumulated batch size of 64, a
learning rate of 10−6, 40k warm-up steps, and AdamW as optimizer.
Fine-tuning for 300k samples took around 34 hours on a single
GeForce RTX 3090 with 24 GB memory.

4.3 Second Stage Fine-tuning
Collection. For the second stage fine-tuning, we use the stan-

dard entity retrieval collection, DBpedia-Entity v2 [21]. The col-
lection is based on DBpedia 2015-10 and consists of four different
categories of queries: (i) SemSearch: named entity queries looking
for particular entities; e.g., “mario bros”, (ii) INEX-LD: keyword-
style entity-oriented queries; e.g., “bicycle benefits health”, (iii)
ListSearch: queries asking for a list of entities; e.g., “Hybrid cars
sold in Europe”, and (iv) QALD-2: natural language questions about
entities; e.g., “Who produces Orangina?” Relevance judgements
in this dataset are graded: Highly relevant (2), Relevant (1), and
irrelevant (0).

Documents in the DBpedia-Entity v2 collection are entities, each
represented by an abstract and other metadata (stored in RDF for-
mat). These entity abstracts provide concise descriptions about
entities and are comparable in length to MS MARCO passages.
Both queries and entity abstracts are highly entity-oriented, re-
flected by the average number of entity annotations for queries and
abstracts in Table 1.

Training. We consider entity abstracts as entity descriptions
and use them as documents in monoBERT and EM-BERT. Since the
DBpedia-Entity v2 collection provides a limited amount of training
data (only 467 queries), we take the fine-tuned model on the MS
MARCO passage dataset (Section 4.2) and continue fine-tuning for
both monoBERT and EM-BERT models using the provided folds for
5-fold cross validation, each fold containing 48k query-entity pairs

1https://huggingface.co/castorini/monobert-large-msmarco

https://huggingface.co/castorini/monobert-large-msmarco


Table 2: Results on DBpedia-Entity v2 collection. Superscripts 1/2/3/4 denote statistically significant differences (better or
worse) compared to base method/monoBERT (1st)/monoBERT/EM-BERT (1st), respectively. The highest value per column is
marked with underline and in bold. The highest value per column and per block is marked with underline.

NDCG SemSearch INEX-LD ListSearch QALD-2 Total
@10 @100 @10 @100 @10 @100 @10 @100 @10 @100

ESIM𝑐𝑔 [16] 0.417 0.478 0.217 0.286 0.211 0.302 0.212 0.282 0.262 0.335
KEWER [31] - - - - - - - - 0.270 0.310
BLP-TransE [10] 0.631 0.723 0.446 0.546 0.442 0.540 0.401 0.482 0.472 0.562
BM25F+KEWER [31] 0.661 0.733 0.468 0.530 0.440 0.521 0.386 0.474 0.483 0.560
BM25 0.425 0.523 0.298 0.330 0.274 0.322 0.192 0.243 0.291 0.349
+monoBERT (1st) 0.5881 0.6551 0.4061 0.4591 0.4221 0.4581 0.3501 0.4061 0.4371 0.4901
+monoBERT 0.5771 0.64012 0.4091 0.4521 0.4231 0.44912 0.3471 0.39212 0.4351 0.47912
+EM-BERT (1st) 0.5931 0.66713 0.3951 0.4481 0.4361 0.4651 0.3511 0.4031 0.4401 0.49213
+EM-BERT 0.6121 0.6721 0.3921 0.43412 0.4781234 0.46913 0.3751234 0.418134 0.4611234 0.49513
BM25F-CA [21] 0.628 0.720 0.439 0.530 0.425 0.511 0.369 0.461 0.461 0.551
+monoBERT (1st) 0.605 0.6821 0.427 0.501 0.440 0.510 0.405 0.490 0.467 0.544
+monoBERT 0.5912 0.66312 0.434 0.48912 0.438 0.4962 0.401 0.4672 0.463 0.52612
+EM-BERT (1st) 0.609 0.6953 0.418 0.4901 0.452 0.5183 0.398 0.483 0.466 0.5443
+EM-BERT 0.621 0.695 0.399 0.46912 0.4921234 0.53523 0.4351234 0.5121234 0.4861234 0.5533
GEEER [16] 0.660 0.736 0.466 0.552 0.452 0.535 0.390 0.483 0.487 0.572
+monoBERT (1st) 0.643 0.733 0.486 0.564 0.4931 0.5541 0.4491 0.5251 0.5151 0.5911
+monoBERT 0.6332 0.7252 0.481 0.563 0.4921 0.5531 0.43912 0.51912 0.50812 0.58612
+EM-BERT (1st) 0.650 0.743 0.483 0.561 0.5041 0.5621 0.4441 0.5221 0.51713 0.59413
+EM-BERT 0.664 0.744 0.479 0.561 0.5441234 0.5791234 0.4831234 0.5431234 0.5411234 0.6041234

with approximately 34% relevant and 66% non-relevant entities.
In this process, both models are fine-tuned for one epoch using
all training data of each fold, resulting in 5 different models each.
The fine-tuned models are then used for ranking the test queries
in the corresponding folds. Note that in this fine-tuning process,
no hyper-parameter optimization is performed. In this process,
both models are fine-tuned for one epoch using the training data
of each fold, resulting in 5 different models each. The fine-tuned
models are used for ranking the test queries in the corresponding
folds. Note that in this fine-tuning process, no hyper-parameter
optimization is performed. For both models an aggregated batch
size of 64, learning-rate of 10−6, and AdamW optimizer is used.
Warmup step is changed to 4000, following the 10% warmup step
rule.

4.4 Baselines
We compare EM-BERT with the state-of-the-art entity retrieval
methods using term-matching, neural, and BERT-based approaches.
The baselines are:
BM25: The BM25 run, based on the short abstracts of entities,
with parameters 𝑘 = 0.9 and 𝑏 = 0.4. Similar to monoBERT and
EM-BERT, this run uses only abstract information of entities
(unlike other methods that use reach representation of entities).
BM25F-CA [21]: The fielded variant of BM25, obtaining scores
from 5-field representation of entities. Field weights are computed
using Coordinate Ascent on each train fold, and then scored on
the corresponding test fold. This is the best non-neural run and
also the best baseline reported in [21].
ESIM𝑐𝑔 [16]: ESIM𝑐𝑔 ranks entities based on the aggregated
cosine similarity scores between the Wikipedia2Vec embedding

of each linked entity in the query and the target entity. Entities in
this method are linked using TAGME [14]. The method re-ranks
the BM25F-CA run.
GEEER [16]: GEEER linearly combines the BM25F-CA score
and entity-query similarities based on ESIM𝑐𝑔 . The weights of
this linear combination are computed on each train fold using
Coordinate Ascent, and scored accordingly on each test fold.
Similar to ESIM𝑐𝑔 , GEEER re-ranks the BM25F-CA run.
KEWER [31]: KEWER uses an embedding method with joint
word and entity embeddings. A query-entity score is computed
on all query terms by the weighted sum of the similarity between
the target entity embedding and the term, re-ranking the BM25F-
CA run.
BM25F+KEWER [31]: Themodel linearly combines the KEWER
score as listed above with BM25F-CA and re-ranks the BM25F-CA
run.
BLP-TransE [10]: BLP-TransE is a BERT-based method, com-
bining a BERT cross-encoder architecture with TransE graph
embeddings. It encodes queries and entities, uses the similarity
between these encodings as query score, and then re-ranks and
linearly combines the BM25F-CA scores.
monoBERT: Our Pygaggle implementation of the monoBERT
model. This implementation achieves slightly better performance
compared to results reported in [33]: MRR@10 of 0.379 vs 0.372
on theMSMARCO development set. Following themulti-stage re-
ranking method [33], we re-rank three entity retrieval runs using
monoBERT: BM25, BM25F-CA, and GEEER (the best baseline
run). The re-ranking is performed on the top-1000 entities of the
BM25 and BM25F-CA, and top-100 entities of the GEEER run (as
GEEER re-ranks the BM25F-CA run).



Figure 2: Comparison of re-ranked BM25F-CA run with
monoBERT and EM-BERT for differentmention tokenization
categories.

Figure 3: Mention tokenization categories for the for types of
queries in DBPedia-Entity v2 collection.

Table 3: Comparison of results for queries without and with
at least one linked entity. Superscripts 1/2/3 show statistically
significant differences compared to BM25F-CA/monoBERT
(1st)/monoBERT, respectively.

DBpedia-Entity v2 NDCG@10 (>1 en) NDCG@10 (no-en)
BM25F-CA 0.481 0.414
+monoBERT (1st) 0.487 0.422
+monoBERT 0.482 0.420
+EM-BERT 0.516123 0.420

4.5 Evaluation Metrics
For evaluation of entity retrieval, we use the commonly reported
metric in [21]; theNormalizedDiscounted Cumulative Gain (NDCG)
at ranks 10 and 100. Statistical significant differences of NDCG@10
and NDCG@100 values are determined using the two-tailed paired
t-test with p-value < 0.05.

5 RESULTS AND ANALYSIS
In the following, we evaluate our entity-enriched BERT-based re-
trieval model and answer our four research questions (Sections 5.1-
5.4 ) listed in Section 1.

5.1 Entity Retrieval Results
In this section, we answer our first research question: RQ1: Can an
entity-enriched BERT-based retrieval model improve the performance
of entity retrieval?
We compare retrieval performance of EM-BERT with a variety of
models on the DBpedia-Entity v2 collection in Table 2. The baseline
(cf. Section 4.4) results are presented in the top part of the table.
The next three compartments in the Table summarise results of
re-ranking BM25, BM25F-CA, and GEEER runs with the following
models:

• monoBERT (1st): The monoBERT model after first stage
fine-tuning; cf. Section 4.4.

• monoBERT: The monoBERT model after second stage fine-
tuning on DBpedia-Entity v2.

• EM-BERT (1st): The EM-BERT model fine-tuned on the MS
MARCO passage collection. Re-ranking setup is similar to the
monoBERT runs; cf. Section 4.4.

• EM-BERT: The EM-BERTmodel after second stage fine-tuning.
Setup is similar to the previous run.

As shown in Table 2, re-ranking of the GEEER run with EM-
BERT markedly outperforms all baselines and establishes a new
state-of-the-art result on the DBpedia-Entity v2 collection, with
11% improvements over the best run. When re-ranking the BM25
and BM25F-CA runs, we observe the same trend that EM-BERT
outperforms all the corresponding BERT-based baselines. Compar-
ing different query categories, EM-BERT improves over all runs by
a large margin for ListSearch and most importantly for QALD-2
queries; improvements over GEEER are 20% and 24% with respect to
NDCG@10 for ListSearch and QALD-2 queries, respectively. QALD
queries are complex natural language queries that are hard to an-
swer for most neural and non-neural models, reflected by the lowest
NDCG scores on all baseline models.

Table 2 also shows that monoBERT performance is decreased
when fine-tuned with a limited amount of training data. The drop
in the performance of monoBERT is expected due to the known
instabilities of BERT with few-sample training [53], which can
cause forgetting of what the model has already learned. The strik-
ing observation, however, is that EM-BERT results are improved
when trained on the same data and using the same procedure. This
indicates that entity-enriched BERT models enable fine-tuning on
limited training data, thereby contributing to data-efficient training
of BERT for entity-oriented tasks.

Based on these results, we can positively answer our first re-
search question: our entity-enriched BERT-based model significantly
improves state-of-the-art results on entity retrieval, and more interest-
ingly, it is robust against instabilities of BERT when fine-tuned with
limited training data.



(a) Embeddings of entity tokens. (b) Embeddings of entity mention tokens.
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7 APPENDIX

Table 6: Legend for queries used in Figures 2a and 2b

Query ID Query
INEX_LD-20120112 vietnam war facts
INEX_LD-20120512 south korean girl groups
INEX_LD-2009039 roman architecture
INEX_LD-2009063 D-Day normandy invasion
INEX_LD-2010004 Indian food
INEX_XER-127 german female politicians
QALD2_te-39 Give me all companies in Munich
QALD2_tr-26 Which bridges are of the same type as

the Manhattan Bridge?

Table 7: Legend for queries used in Figures 2a and 2b

Query
vietnam war facts
south korean girl groups
roman architecture
D-Day normandy invasion
Indian food
german female politicians
Give me all companies in Mu-

nich
Which bridges are of the same

type as the Manhattan Bridge?

2021-10-21 23:32. Page 9 of 1–9.

Figure 4: UMAP plots of final layer EM-BERT embeddings of entity tokens and their corresponding mention tokens. Queries
were randomly selected from queries with between 100 and 200 relevant entities.

5.2 Query Analysis
In the following we answer our research question RQ2: When and
which queries are helped by the EM-BERT model?

Entity annotations of queries. Knowing that not all queries
in DBpedia-Entity v2 have a linked entity, we expect EM-BERT
to perform better on queries with linked entities than on queries
without them. To study this hypothesis, we compare NDCG@10
for two subsets of DBpedia-Entity v2 queries: with and without at
least one linked entity. Table 3 shows the results. We see substantial
improvements of EM-BERT over monoBERT and monoBERT (1st)
for queries with linked entities, confirming our hypothesis.

Tokenization of entity mentions. To further our understand-
ing of helped queries, we investigate the difference in EM-BERT
performance for various types of linked queries by looking into
their mentions tokenization. The BERT tokenizer splits words into
word pieces, which can be categorized into beginning word pieces,
indicating either the start of a word or a full word, and middle/end
word pieces starting with a ‘##’. BERT employs around 30k tokens,
consisting of around 24k beginning tokens and 6k middle/end to-
kens. Given that Wikipedia has around 12 million distinct entities,
we expect only the most common entities to be present as a single
word piece. We hypothesize that there is a performance difference
between these very common entities, which are often seen in their
natural form during the BERT pre-training process, and the rarer
entities, where their mentions are broken into several word pieces.
We, therefore, divide entity mentions into four categories:

• One token: Mentions that are considered as a single token by
the BERT tokenizer; e.g., “France” is tokenized to ‘France’.

• Multiple tokens, no ##: Mentions that are tokenized to more
than one token, where each token represents a single unbroken
word; e.g., “Yoko Ono” is tokenized to ‘Yoko’, ‘Ono’.

• One ##: Mentions that are split into multiple word pieces, of
which exactly one is a middle/end word piece, e.g., “Weser” is
be tokenized to ‘wes’, ‘##er’

• Multiple ##: Mentions which gets split into multiple word
pieces, of which more than one is a middle/end word piece,
for example “Frisian” is tokenized to ‘fr’, ‘##isi’, ‘##an’.

We categorize each query with a linked entity in one of the
previously mentioned categories, prioritizing the most complicated
entity; i.e., if a query has two mentions belonging to “One token”
and “Multiple ##” categories, the query is categorized as “Multiple
##”. Figure 2 compares the performance of monoBERT and EM-
BERT models for these four mention tokenization categories. It
shows that gains of EM-BERT are more pronounced for queries in
“Multiple ##” and “One ##” categories than other categories. This
supports our claim that queries with uncommon entitymentions are
most helped by including their entity embeddings in the EM-BERT
model. Additionally, we illustrate the relation between different
tokenization categories and the query types mention (cf. Section 4.3)
in Figure 3. The plot shows that 51% of INEX-LD queries have no
linked entities, explaining marginal improvements of EM-BERT for
these queries. This plot also describes why EM-BERT performs best
on ListSearch and QALD-2 queries: most of the less known entities
fall in “Multiple ##” and “One ##” categories.

These results provide an answer to RQ2: EM-BERT helps queries
that are linked to at least one entity. Additionally, entity information
provided by the EM-BERTmodel is most useful for less popular entities,
which BERT cannot treat their mentions as a single token.

5.3 Model Analysis
To investigate RQ3:Why does the EM-BERT model work and what
does it learn during the fine-tuning stage?, we examine the proximity
of the embedding tokens compared to the mention tokens in the
final layer of the BERT network, and also discuss several examples
of helped queries.

Entities vs. mention embeddings. To get an understanding of
what BERT learns from entity information, we compare entity and
mention embeddings in the final layer of EM-BERT. We randomly
choose eight queries with 100-200 relevant entities. For each of
those documents, we take the first four linked entities and extract



Table 4: Comparison between EM-BERT and monoBERT for two example queries. Each query is listed twice, first with the
normal BERT tokenization, then with the EM-BERT tokenization, both with the attentions of the first layer and first attention
head. The Rel. column indicates the relevance judgement for that entity. The last two columns show the corresponding ranks
obtained by the monoBERT/EM-BERT models for the entity.
Query Entity abstract Rel. Baseline Comparison
give me all movies directed by
francis ford cop ##pol ##a

christopher cop ##pol ##a ( born january 25 , 1962 ) is a
film director and producer 0 monoBERT: 2 EM-BERT:

551

give me all movies directed by
francis ford cop ##pol ##a /
ENTITY/Francis_Ford_Coppola

rumble fish / ENTITY/Rumble_Fish is an
american / ENTITY/United_States 1983 drama
film directed by francis ford cop ##pol ##a /
ENTITY/Francis_Ford_Coppola .

2 monoBERT: 119 EM-BERT: 1

give me the capitals of all countries
in africa

list of african depend ##encies — including the
respective capitals . 0 monoBERT: 1 EM-BERT:

105

give me the capitals of all countries
in africa / ENTITY/Africa

da ##kar / ENTITY/Dakar is the capital and largest
city of senegal . it is located on the cap - ve ##rt
peninsula / ENTITY/Cap-Vert on the atlantic coast /
ENTITY/East_Coast_of_the_United_States and is the
western ##most city in the old world / ENTITY/Europe
and on the african / ENTITY/Africa mainland .

1 monoBERT: 82 EM-BERT: 1

their entity and mention embeddings from the final layer of EM-
BERT. The mention embeddings are taken from the first starting
token before that entity. We use UMAP [28] with the default set-
tings to plot these embeddings in 2-dimensional space; see Figure 4.
As is evident from the plots, the entity embeddings form more pro-
nounced clusters than the entity mention embeddings. For example,
in the entity embedding plot, American bridges and rivers build
a cluster together with other entities based in the US or Canada,
while being close to the corresponding queries. This also indicates
that the entity information injected through entity embeddings
prevails into the final layers of the BERT model, keeping a better
representation of entity information than provided with the default
BERT word piece tokens.

Insightful Examples. We discuss in detail a few (hand-picked)
example queries that are especially helped or hurt by re-ranking
with the EM-BERT model. Table 4 visualizes the attention weights
of the [CLS] token for the first attention head on the first layer,
for sample query-entity pairs. In the query “Give me all movies
directed by Francis Ford Coppola”, monoBERT incorrectly ranks
other filmmaker members of the Coppola family, matching the last
name only. EM-BERT, in contrast, finds the correct entity, as movies
directed by Francis Ford Coppola are situated close to him in the
embedding space (as opposed to the movies by his daughter Sofia
Coppola). Table 4 shows that EM-BERT gives high attention to the
entity tokens relevant to the entity and query. It also shows high
attention to the words “movies”, which is essential here.

We can also see that through fine-tuning on DBpedia-entity, EM-
BERT learns to retrieve specific entities for queries requesting a
list. For example for the query “Give me the capitals of all countries
in Africa”, while monoBERT’s highest ranked entities are general
overview pages like ‘List of African dependencies’, all of EM-BERT’s
highest-ranked entities are capitals of African countries like ‘Dakar’
and ‘Porto-Novo’.

5.4 Performance on Passage Retrieval
Finally, we turn to our last research question, RQ4: How does our
entity-enriched BERT-based model perform on other ranking tasks?
To further our understanding on the effect of entity-enriched BERT
for IR tasks, we compare the monoBERT and EM-BERTmodels after
the first fine tuning stage on the MSMARCO collection. We observe
no significant differences between the two models for both queries
with and without linked entities. A similar observation is made
for the TREC Conversation Assistant Track (TREC-CAsT) [24].
We posit that the added value of enhancing BERT-based retrieval
models with explicit entity representations is mainly pronounced
for entity-oriented tasks.

6 CONCLUSION AND FUTUREWORK
In this research, we investigated the value of adding entity embed-
dings to BERT for entity search. We proposed an entity-enhanced
BERT-based retrieval model, EM-BERT, and compared it with a reg-
ular BERT model. We found that EM-BERT improves substantially
over the state-of-the-art results, showing that entity-oriented tasks
benefit from entity embeddings in BERT, as is hypothesized in [5].
We found three categories where entities help the most: complex
natural language queries, queries requesting a list of entities with
a certain property, and queries with less known entities, in which
their mentions get split in multiple tokens by the BERT tokenizer.
We also showed that EM-BERT, unlike BERT-based retrieval models,
can be fine-tuned with limited training data, thus being effective
for lesser-resourced entity-related tasks.

For further research, the effect of the entity linking method
can be investigated; here we used REL, which is an entity linker
with high precision. It would be also interesting to evaluate the
performance of other dense and sparse retrieval methods on entity-
oriented queries and tasks. This, however, may require additional
training data for fine-tuning on entity-oriented queries, which
would create a supplementary MS Marco subset to train and evalu-
ate ranking systems.
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